Project Fiddle
Fast & Efficient Infrastructure for Distributed Deep Learning

Amar Phanishayee

with

Nikhil Devanur, Aaron Harlap, Animesh Jain, Liang Luo, Deepak Narayanan, Jacob Nelson, Gennady Pekhimenko, Vivek Seshadri, Jorgen Thelin, Shivaram Venkataraman, Guanhua Wang
Big Data Systems – Gen AI

• Motivating Scenarios:

Image Recognition, Classification

• Solutions:

DistBelief

Translation & Speech – Text - Speech

TensorFlow™

Microsoft Research
Deep Learning for X

- Image recognition, classification
- Segmentation
- Captioning
- Stereo
- Depth estimation
- Video action recognition
- Sentiment Analysis
- Speech-Text, Text-Speech, OCR
- Translation
- …
Training is time and resource intensive

- Long running **training** jobs: Days to multiple weeks
- Train, Validate, Repeat
 Performance and accuracy specs validated only by running system
- Naïvely parallelizing work can be detrimental
- No luxury of limiting solution to one part of the stack
Need for speed

From EE Times – September 27, 2016

"Today the job of training machine learning models is limited by compute, if we had faster processors we'd run bigger models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude – 100x or greater."

– Greg Diamos, Senior Researcher, SVAIL, Baidu
Problem

Systematically speed-up distributed learning tasks while eking out the most from the resources used

Goal: 100x more efficient training

Day long training of model in 15-min coffee break

Approach

Cut through layers of the system stack and optimize all relevant parts
<table>
<thead>
<tr>
<th>Memory, Computation</th>
<th>Single Machine Training</th>
<th>Multi-Machine Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gist</td>
<td>Train larger networks on a single GPU by reducing memory footprint.</td>
<td>Efficiently scale training. New way to parallelize DNN computation.</td>
</tr>
<tr>
<td>Blink</td>
<td>Blazingly fast transfers over PCIe + NVLink + IB</td>
<td>Hub</td>
</tr>
<tr>
<td>PipeDream</td>
<td></td>
<td>Fast parameter servers</td>
</tr>
<tr>
<td>Single Machine Training</td>
<td>Multi-Machine Training</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Gist</td>
<td>PipeDream</td>
<td></td>
</tr>
<tr>
<td>Train larger networks on a single GPU by reducing memory footprint.</td>
<td>Efficiently scale training. New way to parallelize DNN computation.</td>
<td></td>
</tr>
<tr>
<td>Up to 2x compression ratio</td>
<td>3x faster training</td>
<td></td>
</tr>
<tr>
<td>Blink</td>
<td>Hub</td>
<td></td>
</tr>
<tr>
<td>Blazingly fast transfers over PCIe + NVLink + IB</td>
<td>Fast parameter servers</td>
<td></td>
</tr>
<tr>
<td>Collective transfer primitives</td>
<td>Up to 3x speedup</td>
<td></td>
</tr>
<tr>
<td>8x faster than NCCL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microsoft Research
Single Machine Training

Gist

Train larger networks on a *single* GPU by reducing memory footprint.

Up to 2x compression ratio

Multi-Machine Training

Interconnects

Memory, Computation
Training Examples
\(<x_1, y_1>\)
\(<x_2, y_2>\)
...

Learning Algorithm

Hypothesis
\(h(\theta, x) \rightarrow y\)

\(g(\theta^T x)\) or \(g(t)\)

Learn \(\theta\)

\[J(\theta) = \frac{1}{m} \sum_{i=1}^{m} c(h(\theta)_i, y_i)\]

\(\theta_i = \theta_i - \mu \left(\frac{\partial J(\theta)}{\partial \theta_i} \right)\)
Structure of DNN computation

\[g(a \times \alpha + b \times \beta + c \times \gamma + d \times \delta) \quad \text{or} \quad g(\theta^T x) \]

Layers

Activations (feature maps)

Batch. Run for all input items. Repeat over many “epochs”
Example – AlexNet
(Image Classification)

Conv 1: Edge+Blob
Conv 3: Texture
Conv 5: Object Parts
Fc8: Object Classes

Slide Credit: http://vision03.csail.mit.edu/cnn_art/
Tasks, datasets, challenges

• 1989: MNIST
• 2001: Caltech 101
• 2007 – 2012: PASCAL Visual Object Classes
 • 20 classes
• 2014 - … : Imagenet 1K
 • Deng et al.
 • Classification and Detection
Profile of memory consumption

Feature Maps are a major consumer of GPU memory

CNTK Profiling

Larger minibatch size ➔ potential crash
Profile of memory consumption

Feature Maps are a major consumer of GPU memory

CNTK Profiling

Larger minibatch size ➔ potential crash

Heavy hitters:
Relu→Pool, Relu/Pool→Conv
Idea: Encode data structures when unused, Decode on use

Forward Pass

| X | L_i | Y | L_{i+1} | Z |

Backward Pass

| dy | L_i | dx |

Lifetime of X

Usage of X

Statically construct usage schedule for all data structures
Gist Architecture

- **Statically** construct usage schedule for all data structures

- Layer-specific encodings
 - Lossless (Binarize, Sparse Storage/Dense Compute)
 - Lossy (Delayed Precision Reduction)
Gist Lossless Encodings

For Relu->Pool

\[dX = f(Y, dY) \]
\[dx = y > 0 ? dy : 0; \]
Relu Backward Propagation

Binarize
1 bit representation of 32bit values in Y

32x reduction

For Relu/Pool->Conv

Naively applying Binarize for Relu/Pool followed by Conv can increase memory consumption!
Gist Lossless Encodings

For Relu->Pool

\[dX = f(Y, dY) \]
\[dx = y > 0 \ ? \ dy : 0; \]
Relu Backward Propagation

Binarize

1 bit representation of 32bit values in Y

For Relu/Pool->Conv

\[dX = f(X, dY) \]

Sparse Storage, Dense Compute

(sparse compute is computationally expensive)
Gist Lossy Encodings

- Used for all other feature maps
- Training with reduced precision (8/10/16 bits) – done only when encoding/stashing values
- Forward pass uses full fidelity values

8 bits enough! 8/10 bits not enough. 16 bits works out. 10 bits enough!
Gist – Putting it all together

Up to 2x compression ratio

Minimal runtime overhead (1 - 7%) for same batch size

With just lossless, we go faster at times (memory bandwidth bound)
<table>
<thead>
<tr>
<th>Memory, Computation</th>
<th>Single Machine Training</th>
<th>Multi-Machine Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiddle Gist</td>
<td>Train larger networks on a single GPU by reducing memory footprint.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up to 2x compression ratio</td>
<td></td>
</tr>
</tbody>
</table>

Interconnects

Microsoft Research
Distributed Deep Learning

- **Data Parallelism**
 - Replicas run in parallel on different machines
 - Occasionally exchange what they have learnt
 - Naïve setup can hurt convergence, accuracy
 - Total time = (Time per Epoch) * (#Epochs for given accuracy)

Hardware Efficiency

Statistical Efficiency

Manually tuned for performance of individual jobs
Pipeline Parallelism in Fiddle

- Idea: Pipeline computation across machines
 - For training tasks, optimize for throughput
 - Each machine runs a subset of layers
 - Compute one thing, data flows to compute task
 - Better FLOPs due to cache locality
 - Fits CPU, GPU, hybrid, heterogeneous clusters
Challenges

- No bubbles in pipeline
 - How should we divvy work across machines?

\[
\begin{align*}
 r_i &= \text{runtime}(f_i + b_i) \\
 t_i &= \text{transfer-time}(i, i+1) \\
 l_{ij} &= \max \left\{ \sum_{k=i}^{j} r_k, t_j \right\} \\
 \min \max_{P} l_{[i,j]} &\in P \\
\end{align*}
\]
Challenges

• No bubbles in pipeline
 • How should we divvy work across machines?
Challenges

• No bubbles in pipeline
 • How should we divvy work across machines?

Running at speed of the slowest layer
 ▪ Idle Cycles

1x

2x

0.5x

0.5x
Challenges

- No bubbles in pipeline
 - How should we divvy work across machines?
 - Replicate stages (if needed)
 - Static load balancing mini-batch-id % stage-replica-id
 - F/B paths consistent
Challenges

• No bubbles in pipeline
 • How should we divvy work across machines?
 • Replicate stages (if needed)
 – Static load balancing mini-batch-id % stage-replica-id
 – F/B paths consistent
 • How many items to admit?
 – Wild, S, less?
Challenges

- No bubbles in pipeline
 - How should we divvy work across machines?
 - Replicate stages (if needed)
 - Static load balancing mini-batch-id % stage-replica-id
 - F/B paths consistent
- How many items to admit?
 - Wild, S, less?
Challenges

• No bubbles in pipeline
 • How should we divvy work across machines?
 • Replicate stages (if needed)
 – Static load balancing mini-batch-id % stage-replica-id
 – F/B paths consistent
 • How many items to admit?
 – Wild, S, less?

• In **steady** state:
 Each new item learns from a previous (new) mini-batch
Challenges

• No bubbles in pipeline
 • How should we divvy work across machines?
 • Replicate stages (if needed)
 – Static load balancing mini-batch-id % stage-replica-id
 – F/B paths consistent
• How many items to admit?
 – Wild, S, less?

• In **steady** state:
 Each new item learns from a previous (new) mini-batch
 • Stage alternates between F/B
Challenges

• No bubbles in pipeline
 • How should we divvy work across machines?
 • Replicate stages (if needed)
 – Static load balancing mini-batch-id % stage-replica-id
 – F/B paths consistent
 • How many items to admit?
 – Wild, S, less?

• In **steady** state:

 Each new item learns from a previous (new) mini-batch
 • Stage alternates between F/B
Challenges

• No bubbles in pipeline
 • How should we divvy work across machines?
 • Replicate stages
 (if needed)
 – Static load balancing mini-batch-id % stage-replica-id
 – F/B paths consistent
 • How many items to admit?
 – Wild, S, less?

• In **steady** state:
Each new item learns from a previous (new) mini-batch
 • Stage alternates between F/B
Challenges

• No bubbles in pipeline
 • How should we divvy work across machines?
 • Replicate stages (if needed)
 – Static load balancing mini-batch-id % stage-replica-id
 – F/B paths consistent
 • How many items to admit?
 – Wild, S, less?

• In **steady** state:
 Each new item learns from a previous (new) mini-batch
 • Stage alternates between F/B
Challenges

- No bubbles in pipeline
 - How should we divvy work across machines?
 - Replicate stages (if needed)
 - Static load balancing mini-batch-id % stage-replica-id
 - F/B paths consistent
- How many items to admit?
 - Wild, S, less?
- In **steady** state:
 - Each new item learns from a previous (new) mini-batch
 - Stage alternates between F/B

Statistical Efficiency

- Affected by feature map and model parameter versions
- Each incomplete mini-batch needs to stash feature maps between F and B passes
- Should admitted items see the updates of the same set of minibatches across levels (not newer ones)?
Valid Gradients Or Bust

\[w^{(t+1)} = w^{(t)} - \mu \star \nabla f(w_1^{(t)}, w_2^{(t)}, \ldots, w_n^{(t)}) \]

PipeDream with wt stashing is critical for valid gradients
(use same wts across F and B *within* every stage)

\[w^{(t+1)} = w^{(t)} - \mu \star \nabla f(w_1^{(t-n+1)}, w_2^{(t-n+2)}, \ldots, w_n^{(t)}) \]
Valid Gradients Or Bust

\[w^{(t+1)} = w^{(t)} - \mu \star \nabla f(w_1^{(t)}, w_2^{(t)}, \ldots, w_n^{(t)}) \]

PipeDream with **wt stashing** is critical for valid gradients
(use same wts across F and B **within** every stage)

\[w^{(t+1)} = w^{(t)} - \mu \star \nabla f(w_1^{(t-n+1)}, w_2^{(t-n+2)}, \ldots, w_n^{(t)}) \]

PipeDream with **vertical sync** maps to bounded staleness
(use same wts across all stages)

\[w^{(t+1)} = w^{(t)} - \mu \star \nabla f(w_1^{(t-n+1)}, w_2^{(t-n+1)}, \ldots, w_n^{(t-n+1)}) \]
Challenges

• No bubbles in pipeline
 • How should we divvy work across machines?
 • Replicate stages (if needed)
 – Static load balancing mini-batch-id % stage-replica-id
 – F/B paths consistent
• How many items to admit?
 – Wild, S, less?
• In **steady** state:
 Each new item learns from a previous (new) mini-batch
 • Stage alternates between F/B

• Statistical Efficiency
 • Affected by feature map (FM) and model parameter versions
 • Each incomplete mini-batch needs to stash feature maps between F and B passes
 • Should admitted items see the updates of the same set of minibatches across levels (not newer ones)?

• Memory Manager
 • Stashing: Static memory buffer pool (FM, wts, wts-updates)
 • Use same wts across F/B within every stage (**valid gradient**)
 • Vertical Sync
Stage Runtime Architecture

Fw Network Receive

Fw Copy to GPU

Bw Copy to GPU

Bw Network Receive

Intermediate Data Manager

Fw Copy to CPU

Bw Copy to CPU

Bw Network Send

Read Intermediate data

Get GPU memory for output

Caffe Compute Thread

Read Model Params

Update Model

Client Side Cache & Parameter Versioning

Sharded Parameter Server
Visualization / Debugging
Encouraging results

Up to 3x faster, more efficient

Effect of smaller minibatches on hardware efficiency and stat efficiency in data parallel runs
Restructure computation to push a lot less data on the network.
<table>
<thead>
<tr>
<th>Memory, Computation</th>
<th>Single Machine Training</th>
<th>Multi-Machine Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gist</td>
<td>Train larger networks on a single GPU by reducing memory footprint.</td>
<td>Efficiently scale training. New way to parallelize DNN computation.</td>
</tr>
<tr>
<td></td>
<td>Up to 2x compression ratio</td>
<td>3x faster training</td>
</tr>
<tr>
<td>Blink</td>
<td>Blazingly fast transfers over PCIe + NVLink + IB</td>
<td>Hub</td>
</tr>
<tr>
<td></td>
<td>Collective transfer primitives 8x faster than NCCL</td>
<td>Fast parameter servers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up to 3x speedup</td>
</tr>
</tbody>
</table>

Microsoft Research
Single Machine Training

Memory, Computation

Gist

Diversity in workloads, hardware, and frameworks.

Multi-Machine Training

Interconnects

Blink

TBD

Training Benchmark for DNNs

Hub

PipeDream

Microsoft Research
Ceci n’est pas une pipe.