
Project Fiddle

Fast & Efficient Infrastructure for

Distributed Deep Learning
Amar Phanishayee

with

Nikhil Devanur, Aaron Harlap, Animesh Jain,

Liang Luo, Deepak Narayanan, Jacob Nelson,

Gennady Pekhimenko, Vivek Seshadri, Jorgen Thelin,

Shivaram Venkataraman, Guanhua Wang

Big Data Systems – Gen AI

• Motivating Scenarios:

• Solutions:

2

Image Recognition, Classification Translation &

Speech – Text - Speech

DistBelief

Deep Learning for X

3

• Image recognition, classification

• Segmentation

• Captioning

• Stereo

• Depth estimation

• Video action recognition

• Sentiment Analysis

• Speech-Text, Text-Speech, OCR

• Translation

• …

Training is time and resource intensive

• Long running training jobs: Days to multiple weeks

• Train, Validate, Repeat
Performance and accuracy specs validated only by running system

• Naïvely parallelizing work can be detrimental

• No luxury of limiting solution to one part of the stack

4

Training

Cluster

Serving

Cluster

Serving

Triggered

Data

Scientist

Triggered

Specialization

47%

0%

20%

40%

60%

80%

100%

Communication

Computation

<100% GPU utilization

Overcome memory

bottleneck

Restructure computation

Faster interconnects -

need new protocols,

Rethink what we push

to the network

Need for speed

5

Slide Credit: Joel Emer (MIT, NVIDIA)

6

Problem

Systematically speed-up distributed

learning tasks while eking out the most

from the resources used
Goal: 100x more efficient training

Day long training of model in 15-min coffee break

Approach

Cut through layers of the system stack

and optimize all relevant parts

7

Single Machine Training Multi-Machine Training
M

e
m

o
ry

, C
o

m
p

u
ta

ti
o

n
In

te
rc

o
n

n
e

ct
s

Train larger networks on

a single GPU by reducing

memory footprint.

Gist

Efficiently scale training.

New way to parallelize

DNN computation.

PipeDream

Blazingly fast transfers

over PCIe + NVLink + IB

Blink Hub

Fast

parameter

servers

8

Single Machine Training Multi-Machine Training
M

e
m

o
ry

, C
o

m
p

u
ta

ti
o

n
In

te
rc

o
n

n
e

ct
s

Train larger networks on

a single GPU by reducing

memory footprint.

Gist

Efficiently scale training.

New way to parallelize

DNN computation.

PipeDream

Blazingly fast transfers

over PCIe + NVLink + IB

Blink Hub

Fast

parameter

servers

Up to 2x compression ratio 3x faster training

Collective transfer primitives

8x faster than NCCL
Up to 3x

speedup

9

Single Machine Training Multi-Machine Training
M

e
m

o
ry

, C
o

m
p

u
ta

ti
o

n
In

te
rc

o
n

n
e

ct
s

Train larger networks on

a single GPU by reducing

memory footprint.

Gist

Efficiently scale training.

New way to parallelize

DNN computation.

PipeDream

Blazingly fast transfers

over PCIe + NVLink + IB

Blink PSsst

Fast

parameter

servers

Up to 2x compression ratio 3x faster training

Collective transfer primitives

9x faster than NCCL
Up to 3x

speedup

10

Training

Examples
<x1, y1>

<x2, y2>

…

Hypothesis

Learning

Algorithm

yxh ),(

Learn

)(xg
T

 or)(tg





m

i

ii yhcmJ
1

),)(()/1()(

)(J

i

)
)(

(
i

ii

J











Structure of DNN computation

11

…

…

Layers

Activations (feature maps)

Cat?

Dog

Batch. Run for all input items.

Repeat over many “epochs”

Neuron

a

b

c

d

𝒈 𝒂 ∗∝ +𝒃 ∗ β + 𝒄 ∗ γ + 𝒅 ∗ δ 𝐨𝐫)(xg
T



Example – AlexNet
(Image Classification)

12

Slide Credit: http://vision03.csail.mit.edu/cnn_art/

Tasks, datasets, challenges

• 1989: MNIST

• 2001: Caltech 101

• 2007 – 2012: PASCAL Visual Object Classes

• 20 classes

• 2014 - … : Imagenet 1K

• Deng et al.

• Classification and Detection

13

Profile of memory consumption

14

DNN

Layer

Input Feature Map

(X)

Output Feature Map

(Y)

Output Gradient (dy)
Input Gradient (dx)

dx = f(X, Y, dy)

AlexNet NiN Overfeat VGG-16 Inception

v3

Feature Maps are a major

consumer of GPU memory

CNTK Profiling

Larger minibatch size 

potential crash

Profile of memory consumption

Feature Maps are a major

consumer of GPU memory

CNTK Profiling

Larger minibatch size 

potential crash

Heavy hitters:

Relu->Pool,

Relu/Pool-> Conv

AlexNet NiN Overfeat VGG-16 Inception

v3

AlexNet NiN Overfeat VGG-16 Inception

v3

Idea: Encode data structures when unused,

Decode on use

16

Li

X
…

timeline

Li+1

Y … … …

Forward Pass

Z
Li

Backward Pass

dy dx
…

Lifetime of X

Usage of X

Encode (X) Decode (X)

Full fidelity X

Succinct X

Long temporal gap between two uses

Statically construct usage schedule

for all data structures

Gist Architecture

17

Static

memory allocator

CNTK Runtime

(computation engine)

• Statically construct usage schedule

for all data structures

• Layer-specific encodings

• Lossless (Binarize, Sparse Storage/Dense Compute)

• Lossy (Delayed Precision Reduction)

Gist Lossless Encodings

18

Relu Backward Propagation

Binarize

1 bit representation

of 32bit values in Y

32x reduction

Naively applying Binarize

for Relu/Pool followed by Conv

can increase memory

consumption!

For Relu->Pool For Relu/Pool->Conv

Gist Lossless Encodings

19

Relu Backward Propagation

Binarize

1 bit representation

of 32bit values in Y
Sparse Storage , Dense Compute

(sparse compute is

computationally expensive)

For Relu->Pool For Relu/Pool->Conv

Gist Lossy Encodings

• Used for all other feature maps

• Training with reduced precision (8/10/16 bits)

– done only when encoding/stashing values

• Forward pass uses full fidelity values

20

8 bits enough! 8/10 bits not enough.

16 bits works out.

10 bits enough!

Gist – Putting it all together

21

M
e
m

o
ry

 F
o
o
tp

ri
n
t

R
e
d
u
c
ti
o
n

Up to 2x

compression ratio

Minimal runtime overhead

(1 - 7%) for same batch size

With just lossless,

we go faster at times

(memory bandwidth bound)

22

Single Machine Training Multi-Machine Training
M

e
m

o
ry

, C
o

m
p

u
ta

ti
o

n
In

te
rc

o
n

n
e

ct
s

Train larger networks on

a single GPU by reducing

memory footprint.

Fiddle Gist

Efficiently scale training.

New way to parallelize

DNN computation.

PipeDream

Blazingly fast transfers

over PCIe + NVLink + IB

Blink PSsst

Fast

parameter

servers

Up to 2x compression ratio 3x faster training

Collective transfer primitives

9x faster than NCCL
Up to 3x

speedup

Distributed Deep Learning

• Data Parallelism
• Replicas run in parallel on different machines

• Occasionally exchange what they have learnt

• Naïve setup can hurt convergence, accuracy

• Total time = (Time per Epoch) * (#Epochs for given accuracy)

23

Manually tuned for performance of individual jobs

Statistical Efficiency

Compute

Commun

ication

Compute

Commun

ication

Compute

Commun

ication

Compute

Commun

ication

Hardware Efficiency

Pipeline Parallelism in Fiddle

• Idea: Pipeline computation across machines
• For training tasks, optimize for throughput

• Each machine runs a subset of layers

– Compute one thing, data flows to compute task

– Better FLOPs due to cache locality

• Fits CPU, GPU, hybrid, heterogeneous clusters

24

Forward

Compute

Backward

Compute

Backward

Communication

Forward

Communication

x4

• No bubbles in pipeline
• How should we divvy work

across machines?

Challenges

25

DNN Run

Fiddle Profiler

Fiddle Optimizer

𝒓𝒊 = 𝒓𝒖𝒏𝒕𝒊𝒎𝒆(𝒇𝒊 + 𝒃𝒊)
𝒕𝒊 = transfer-time(i, i+1)

𝒍𝒊𝒋 = 𝒎𝒂𝒙 { , 𝒕𝒋}


j

ik

kr

],[
],[

maxmin ji
PjiP
l



machines

• No bubbles in pipeline
• How should we divvy work

across machines?

Challenges

26

0.5x

1x

1x

0.5x

• No bubbles in pipeline
• How should we divvy work

across machines?

Challenges

27

0.5x

1x

2x

Running at speed of the slowest layer

▪ Idle Cycles

0.5x

• No bubbles in pipeline
• How should we divvy work

across machines?

• Replicate stages

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

Challenges

28

1X

1X

2X

Challenges

29

1X

1X

1X

• No bubbles in pipeline
• How should we divvy work

across machines?

• Replicate stages

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

S

Stages

Challenges

30

• No bubbles in pipeline
• How should we divvy work

across machines?

• Replicate stages

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

Challenges

31

1X

1X

1X

• No bubbles in pipeline

• How should we divvy work

across machines?

• Replicate stages

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state:

Each new item learns from a

previous (new) mini-batch
S

Stages

Challenges

32

• No bubbles in pipeline

• How should we divvy work

across machines?

• Replicate stages

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state:

Each new item learns from a

previous (new) mini-batch

• Stage alternates between F/B

Stage

Forward

Queue

Backward

Queue

mbi

Challenges

33

• No bubbles in pipeline

• How should we divvy work

across machines?

• Replicate stages

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state:

Each new item learns from a

previous (new) mini-batch

• Stage alternates between F/B

Stage

Forward

Queue

Backward

Queue
To next

Level

Challenges

34

• No bubbles in pipeline

• How should we divvy work

across machines?

• Replicate stages

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state:

Each new item learns from a

previous (new) mini-batch

• Stage alternates between F/B

Stage

Forward

Queue

Backward

Queue

mbi-x

Challenges

35

• No bubbles in pipeline

• How should we divvy work

across machines?

• Replicate stages

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state:

Each new item learns from a

previous (new) mini-batch

• Stage alternates between F/B

Stage

Forward

Queue

Backward

Queue

To previous

Level

Challenges

36

• No bubbles in pipeline

• How should we divvy work

across machines?

• Replicate stages

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state:

Each new item learns from a

previous (new) mini-batch

• Stage alternates between F/B

• Statistical Efficiency

• Affected by feature map and

model parameter versions

• Each incomplete mini-batch

needs to stash feature maps

between F and B passes

• Should admitted items see

the updates of the same set

of minibatches across levels

(not newer ones)?

Valid Gradients Or Bust

PipeDream with wt stashing is critical for valid gradients

(use same wts across F and B within every stage)

37

𝒘(𝒕+𝟏) = 𝒘(𝒕) − 𝝁 ∗ 𝛁𝒇(𝒘𝟏
𝒕
, 𝒘𝟐

𝒕
, … ,𝒘𝒏

𝒕
)

𝒘(𝒕+𝟏) = 𝒘(𝒕) − 𝝁 ∗ 𝛁𝒇(𝒘𝟏
𝒕−𝒏+𝟏

, 𝒘𝟐
𝒕−𝒏+𝟐

, … ,𝒘𝒏
𝒕
)

Valid Gradients Or Bust

PipeDream with wt stashing is critical for valid gradients

(use same wts across F and B within every stage)

38

𝒘(𝒕+𝟏) = 𝒘(𝒕) − 𝝁 ∗ 𝛁𝒇(𝒘𝟏
𝒕
, 𝒘𝟐

𝒕
, … ,𝒘𝒏

𝒕
)

𝒘(𝒕+𝟏) = 𝒘(𝒕) − 𝝁 ∗ 𝛁𝒇(𝒘𝟏
𝒕−𝒏+𝟏

, 𝒘𝟐
𝒕−𝒏+𝟐

, … ,𝒘𝒏
𝒕
)

PipeDream with vertical sync maps to bounded staleness

(use same wts across all stages)

𝒘(𝒕+𝟏) = 𝒘(𝒕) − 𝝁 ∗ 𝛁𝒇(𝒘𝟏
𝒕−𝒏+𝟏

, 𝒘𝟐
𝒕−𝒏+𝟏

, … ,𝒘𝒏
𝒕−𝒏+𝟏

)

Challenges

39

• No bubbles in pipeline

• How should we divvy work

across machines?

• Replicate stages

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state:

Each new item learns from a

previous (new) mini-batch

• Stage alternates between F/B

• Statistical Efficiency

• Affected by feature map (FM)

and model parameter versions

• Each incomplete mini-batch

needs to stash feature maps

between F and B passes

• Should admitted items see the

updates of the same set of

minibatches across levels (not

newer ones)?

• Memory Manager

• Stashing: Static memory buffer

pool (FMs, wts, wt-updates)

• Use same wts across F/B within

every stage (valid gradient)

• Vertical Sync

Stage Runtime Architecture

40

Caffe Compute Thread

Get GPU memory for output

Client Side Cache & Parameter Versioning

Sharded Parameter Server

Read Model Params

Fw Network

Receive

Fw Copy to

GPU

Fw Copy to

CPUIntermediate

Data

Manager

Fw Network

Send

Bw Copy to

GPU

Bw Copy to

CPU

Bw Network

Send

Bw Network

Receive

Update Model

Read Intermediate data

Visualization / Debugging

41

Encouraging results

42

Up to 3x

faster, more efficient

Effect of smaller minibatches

on hardware efficiency and

stat efficiency in

data parallel runs

Restructure computation to push a

lot less data on the network

43

44

Single Machine Training Multi-Machine Training
M

e
m

o
ry

, C
o

m
p

u
ta

ti
o

n
In

te
rc

o
n

n
e

ct
s

Train larger networks on

a single GPU by reducing

memory footprint.

Gist

Efficiently scale training.

New way to parallelize

DNN computation.

PipeDream

Blazingly fast transfers

over PCIe + NVLink + IB

Blink Hub

Fast

parameter

servers

Up to 2x compression ratio 3x faster training

Collective transfer primitives

8x faster than NCCL
Up to 3x

speedup

45

Single Machine Training Multi-Machine Training
M

e
m

o
ry

, C
o

m
p

u
ta

ti
o

n
In

te
rc

o
n

n
e

ct
s

Gist PipeDream

Blink Hub

Diversity in workloads, hardware,

and frameworks.

TBD

Training Benchmark for DNNs

Fin

46

