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Big Data Systems – Gen AI

• Motivating Scenarios:

• Solutions:
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Image Recognition, Classification Translation & 

Speech – Text - Speech

DistBelief



Deep Learning for X
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• Image recognition, classification

• Segmentation

• Captioning

• Stereo

• Depth estimation

• Video action recognition

• Sentiment Analysis

• Speech-Text, Text-Speech, OCR

• Translation

• …



Training is time and resource intensive

• Long running training jobs: Days to multiple weeks

• Train, Validate, Repeat
Performance and accuracy specs validated only by running system

• Naïvely parallelizing work can be detrimental

• No luxury of limiting solution to one part of the stack
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need new protocols, 

Rethink what we push 
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Need for speed
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Slide Credit: Joel Emer (MIT, NVIDIA)
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Problem

Systematically speed-up distributed 

learning tasks while eking out the most 

from the resources used
Goal: 100x more efficient training

Day long training of model in 15-min coffee break

Approach

Cut through layers of the system stack 

and optimize all relevant parts
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Train larger networks on 

a single GPU by reducing 

memory footprint. 

Gist

Efficiently scale training.

New way to parallelize 

DNN computation. 

PipeDream

Blazingly fast transfers 

over PCIe + NVLink + IB

Blink Hub

Fast 

parameter 

servers
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Training 

Examples 
<x1, y1>

<x2, y2>

…

Hypothesis

Learning 
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Structure of DNN computation
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…

…

Layers

Activations (feature maps)

Cat?

Dog

Batch.  Run for all input items. 

Repeat over many “epochs”

Neuron

a

b

c

d
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Example – AlexNet
(Image Classification)
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Slide Credit: http://vision03.csail.mit.edu/cnn_art/



Tasks, datasets, challenges

• 1989: MNIST

• 2001: Caltech 101

• 2007 – 2012: PASCAL Visual Object Classes

• 20 classes

• 2014 - … : Imagenet 1K

• Deng et al.

• Classification and Detection
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Profile of memory consumption
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DNN

Layer

Input Feature Map 

(X)

Output Feature Map 

(Y)

Output Gradient (dy)
Input Gradient (dx)

dx = f(X, Y, dy)

AlexNet NiN Overfeat VGG-16 Inception 

v3

Feature Maps are a major 

consumer of GPU memory

CNTK Profiling

Larger minibatch size 

potential crash



Profile of memory consumption

Feature Maps are a major 

consumer of GPU memory

CNTK Profiling

Larger minibatch size 

potential crash

Heavy hitters: 

Relu->Pool, 

Relu/Pool-> Conv

AlexNet NiN Overfeat VGG-16 Inception 

v3

AlexNet NiN Overfeat VGG-16 Inception 

v3



Idea: Encode data structures when unused, 

Decode on use
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Li

X
…

timeline

Li+1

Y …   …  …

Forward Pass 

Z
Li

Backward Pass 

dy dx
…

Lifetime of X

Usage of X

Encode (X) Decode (X)

Full fidelity X 

Succinct X 

Long temporal gap between two uses

Statically construct usage schedule

for all data structures



Gist Architecture
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Static

memory allocator

CNTK Runtime

(computation engine)

• Statically construct usage schedule 

for all data structures

• Layer-specific encodings

• Lossless (Binarize, Sparse Storage/Dense Compute)

• Lossy (Delayed Precision Reduction)



Gist Lossless Encodings
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Relu Backward Propagation

Binarize

1 bit representation 

of 32bit values in Y

32x reduction

Naively applying Binarize 

for Relu/Pool followed by Conv 

can increase memory 

consumption!

For Relu->Pool For Relu/Pool->Conv



Gist Lossless Encodings
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Relu Backward Propagation

Binarize

1 bit representation 

of 32bit values in Y
Sparse Storage , Dense Compute

(sparse compute is 

computationally expensive)

For Relu->Pool For Relu/Pool->Conv



Gist Lossy Encodings

• Used for all other feature maps

• Training with reduced precision (8/10/16 bits) 

– done only when encoding/stashing values

• Forward pass uses full fidelity values
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8 bits enough! 8/10 bits not enough.

16 bits works out.

10 bits enough!



Gist – Putting it all together
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Up to 2x 

compression ratio

Minimal runtime overhead

(1 - 7%) for same batch size

With just lossless, 

we go faster at times

(memory bandwidth bound)
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memory footprint. 
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Efficiently scale training.

New way to parallelize 

DNN computation. 

PipeDream

Blazingly fast transfers 

over PCIe + NVLink + IB

Blink PSsst

Fast 

parameter 

servers

Up to 2x compression ratio 3x faster training

Collective transfer primitives 

9x faster than NCCL
Up to 3x 

speedup



Distributed Deep Learning

• Data Parallelism
• Replicas run in parallel on different machines

• Occasionally exchange what they have learnt

• Naïve setup can hurt convergence, accuracy

• Total time = (Time per Epoch) * (#Epochs for given accuracy)
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Manually tuned for performance of individual jobs

Statistical Efficiency

Compute

Commun

ication

Compute

Commun

ication

Compute
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ication

Compute
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Hardware Efficiency



Pipeline Parallelism in Fiddle

• Idea: Pipeline computation across machines
• For training tasks, optimize for throughput

• Each machine runs a subset of layers 

– Compute one thing, data flows to compute task

– Better FLOPs due to cache locality

• Fits CPU, GPU, hybrid, heterogeneous clusters
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Forward 

Compute

Backward 

Compute

Backward 

Communication

Forward 

Communication

x4



• No bubbles in pipeline
• How should we divvy work 

across machines?

Challenges
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DNN Run

Fiddle Profiler

Fiddle Optimizer

𝒓𝒊 = 𝒓𝒖𝒏𝒕𝒊𝒎𝒆(𝒇𝒊 + 𝒃𝒊)
𝒕𝒊 = transfer-time(i, i+1)
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• No bubbles in pipeline
• How should we divvy work 

across machines?

Challenges
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0.5x

1x

1x

0.5x



• No bubbles in pipeline
• How should we divvy work 

across machines?

Challenges
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0.5x

1x

2x

Running at speed of the slowest layer

▪ Idle Cycles

0.5x



• No bubbles in pipeline
• How should we divvy work 

across machines?

• Replicate stages 

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

Challenges
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1X

1X

2X



Challenges
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1X

1X

1X

• No bubbles in pipeline
• How should we divvy work 

across machines?

• Replicate stages 

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

S 

Stages



Challenges
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mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?



Challenges
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• No bubbles in pipeline

• How should we divvy work 

across machines?

• Replicate stages 

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state: 

Each new item learns from a 

previous (new) mini-batch
S 

Stages



Challenges
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• No bubbles in pipeline

• How should we divvy work 

across machines?

• Replicate stages 

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state: 

Each new item learns from a 

previous (new) mini-batch

• Stage alternates between F/B

Stage

Forward 

Queue

Backward 

Queue

mbi



Challenges
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• No bubbles in pipeline

• How should we divvy work 

across machines?

• Replicate stages 

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state: 

Each new item learns from a 

previous (new) mini-batch

• Stage alternates between F/B

Stage

Forward 

Queue

Backward 

Queue
To next 

Level



Challenges
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• No bubbles in pipeline

• How should we divvy work 

across machines?

• Replicate stages 

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state: 

Each new item learns from a 

previous (new) mini-batch

• Stage alternates between F/B

Stage

Forward 

Queue

Backward 

Queue

mbi-x



Challenges
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• No bubbles in pipeline

• How should we divvy work 

across machines?

• Replicate stages 

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state: 

Each new item learns from a 

previous (new) mini-batch

• Stage alternates between F/B

Stage

Forward 

Queue

Backward 

Queue

To previous 

Level



Challenges
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• No bubbles in pipeline

• How should we divvy work 

across machines?

• Replicate stages 

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state: 

Each new item learns from a 

previous (new) mini-batch

• Stage alternates between F/B

• Statistical Efficiency

• Affected by feature map and 

model parameter versions

• Each incomplete mini-batch 

needs to stash feature maps 

between F and B passes

• Should admitted items see 

the updates of the same set 

of minibatches across levels 

(not newer ones)?



Valid Gradients Or Bust

PipeDream with wt stashing is critical for valid gradients 

(use same wts across F and B within every stage)
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Valid Gradients Or Bust

PipeDream with wt stashing is critical for valid gradients 

(use same wts across F and B within every stage)
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PipeDream with vertical sync maps to bounded staleness

(use same wts across all stages)
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Challenges
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• No bubbles in pipeline

• How should we divvy work 

across machines?

• Replicate stages 

(if needed)

– Static load balancing

mini-batch-id % stage-replica-id

– F/B paths consistent

• How many items to admit?

– Wild, S, less?

• In steady state: 

Each new item learns from a 

previous (new) mini-batch

• Stage alternates between F/B

• Statistical Efficiency

• Affected by feature map (FM) 

and model parameter versions

• Each incomplete mini-batch 

needs to stash feature maps 

between F and B passes

• Should admitted items see the 

updates of the same set of 

minibatches across levels (not 

newer ones)?

• Memory Manager

• Stashing: Static memory buffer 

pool (FMs, wts, wt-updates)

• Use same wts across F/B within 

every stage (valid gradient)

• Vertical Sync



Stage Runtime Architecture
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Caffe Compute Thread

Get GPU memory for output

Client Side Cache & Parameter Versioning

Sharded Parameter Server

Read Model Params

Fw Network 

Receive

Fw Copy to 

GPU

Fw Copy to 

CPUIntermediate 

Data 

Manager

Fw Network 

Send

Bw Copy to 

GPU

Bw Copy to 

CPU

Bw Network 

Send

Bw Network 

Receive

Update Model

Read Intermediate data



Visualization / Debugging
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Encouraging results
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Up to 3x 

faster, more efficient

Effect of smaller minibatches

on hardware efficiency and 

stat efficiency in 

data parallel runs



Restructure computation to push a 

lot less data on the network
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Gist PipeDream

Blink Hub

Diversity in workloads, hardware, 

and frameworks. 

TBD

Training Benchmark for DNNs



Fin
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